normal$53720$ - traducción al árabe
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

normal$53720$ - traducción al árabe

SPECIAL COORDINATE SYSTEM IN DIFFERENTIAL GEOMETRY
Geodesic normal coordinates; Normal coordinate; Normal neighborhood

normal      
adj. عادي, قياسي, طبيعي, صوري شكلي, عياري, سوي, سليم العقل, مستقر
first normal form         
MINIMUM REQUIREMENT IN DATABASE NORMALIZATION
1NF; 1st normal form; Repeating group
الإطار الطبيعي الأول
normal         
WIKIMEDIA DISAMBIGUATION PAGE
Normal (mathematics); Normal (movie); Normal (disambiguation); Normal (film); Normal (song); The Normals; Normals; The Normals (band); The Normals (American band)
‎ سَوِيّ ; طَبِيْعِيّ, نِظامِيّ‎

Wikipedia

Normal coordinates

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at p only), and the geodesics through p are locally linear functions of t (the affine parameter). This idea was implemented in a fundamental way by Albert Einstein in the general theory of relativity: the equivalence principle uses normal coordinates via inertial frames. Normal coordinates always exist for the Levi-Civita connection of a Riemannian or Pseudo-Riemannian manifold. By contrast, in general there is no way to define normal coordinates for Finsler manifolds in a way that the exponential map are twice-differentiable (Busemann 1955).